
Introduction to Software Security 1
ID: 547-BSI | Version: 7 | Date: 1/13/09 8:55:36 AM

Introduction to Software Security
Karen Mercedes Goertzel [vita1]
Updated 2009-01-09

This article describes the need for and the challenges of building secure software, general principles of
secure software development, and the key elements of a secure software life cycle process. The majority of
this material is either adapted or excerpted from Enhancing the Development Life Cycle to Produce Secure

Software: A Reference Guidebook on Software Assurance [DHS/DACS 082].

Software’s Vulnerability to Attack3

The Challenge of Building Secure Software4

Software Assurance5

General Principles of Secure Software Development6

What the Software Practitioner Needs to Know7

Integrating Security into the Software Life Cycle8

Software’s Vulnerability to Attack
What makes it so easy for attackers to target software is the virtually guaranteed presence of vulnerabilities,
which can be exploited to violate one or more of the software’s security properties. According to CERT,
most successful attacks result from targeting and exploiting known, non-patched software vulnerabilities and
insecure software configurations, many of which are introduced during design and code.

In their Report to the President titled Cyber Security: A Crisis of Prioritization [PITAC 059], the President’s
Information Technology Advisory Committee summed up the problem of non-secure software as follows:

Software development is not yet a science or a rigorous discipline, and the development process
by and large is not controlled to minimize the vulnerabilities that attackers exploit. Today, as with
cancer, vulnerable software can be invaded and modified to cause damage to previously healthy
software, and infected software can replicate itself and be carried across networks to cause damage in
other systems. Like cancer, these damaging processes may be invisible to the lay person even though
experts recognize that their threat is growing. And as in cancer, both preventive actions and research
are critical, the former to minimize damage today and the latter to establish a foundation of knowledge
and capabilities that will assist the cyber security professionals of tomorrow reduce risk and minimize
damage for the long term.

The security of software is threatened at various points throughout its life cycle, both by inadvertent and
intentional choices and actions taken by “insiders”—individuals closely affiliated with the organization that
is producing, deploying, operating, or maintaining the software, and thus trusted by that organization—and
by “outsiders” who have no affiliation with the organization. The software’s security can be threatened

• during its development: A developer may corrupt the software—intentionally or unintentionally—in
ways that will compromise the software’s dependability and trustworthiness when it is operational.

• during its deployment (distribution and installation): If those responsible for distributing the
software fail to tamperproof the software before shipping or uploading, or transmit it over easily
intercepted communications channels, they leave the software vulnerable to intentional or unintentional

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1089-BSI.html (Goertzel, Karen Mercedes)
2. #dsy547-BSI_dacs
3. #dsy547-BSI_swvul
4. #dsy547-BSI_challenge
5. #dsy547-BSI_swa
6. #dsy547-BSI_princ
7. #dsy547-BSI_what
8. #dsy547-BSI_integrat
9. #dsy547-BSI_pitac

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1089-BSI.html
#dsy547-BSI_dacs
#dsy547-BSI_swvul
#dsy547-BSI_challenge
#dsy547-BSI_swa
#dsy547-BSI_princ
#dsy547-BSI_what
#dsy547-BSI_integrat
#dsy547-BSI_pitac

Introduction to Software Security 2
ID: 547-BSI | Version: 7 | Date: 1/13/09 8:55:36 AM

corruption. Similarly, if the software’s installer fails to “lock down” the host platform, or configures the
software insecurely, the software is left vulnerable to access by attackers.

• during its operation: Once COTS and open source software has gone operational, vulnerabilities may
be discovered and publicized; unless security patches and updates are applied and newer supported
versions (from which the root causes of vulnerabilities have been eliminated) are adopted, such software
will become increasingly vulnerable. Non-commercial software and open source software (OSS) may
also be vulnerable, especially as it may manifest untrustworthy behaviors over time due to changes in its
environment that stress the software in ways that were not anticipated and simulated during its testing.
Any software system that runs on a network-connected platform has its vulnerabilities exposed during
its operation. The level of exposure will vary depending on whether the network is public or private,
Internet-connected or not, and whether the software’s environment has been configured to minimize its
exposure. But even in highly controlled networks and “locked down” environments, the software may
be threatened by malicious insiders (users, administrators, etc.).

• during its sustainment: If those responsible for addressing discovered vulnerabilities in released
software fail to issue patches or updates in a timely manner, or fail to seek out and eliminate the root
causes of the vulnerabilities to prevent their perpetuation in future releases of the software, the software
will become increasingly vulnerable to threats over time. Also, the software’s maintainer may prove to
be a malicious insider, and may embed malicious code, exploitable flaws, etc., in updated versions of
the code.

Both research and real-world experience indicate that correcting weaknesses and vulnerabilities as early
as possible in the software’s life cycle is far more cost-effective over the lifetime of the software than
developing and releasing frequent security patches for deployed software.

The Challenge of Building Secure Software
External faults that threaten the software’s dependable operation are seen as a security issue when (1) the
faults result from malicious intent or (2) the faults, regardless of their cause, make the software vulnerable

to threats to its security. According to Bruce Schneier in Beyond Fear [Schneier 0610], “Security is about
preventing adverse consequences from the intentional and unwarranted actions of others.”

Enhancing the Development Life Cycle to Produce Secure Software [DHS/DACS 0811] defines secure
software as follows:

To be considered secure, software must exhibit three properties:

1. Dependability: Dependable software executes predictably and operates correctly under all
conditions, including hostile conditions, including when the software comes under attack or runs
on a malicious host.

2. Trustworthiness: Trustworthy software contains few if any vulnerabilities or weaknesses that
can be intentionally exploited to subvert or sabotage the software’s dependability. In addition, to
be considered trustworthy, the software must contain no malicious logic that causes it to behave
in a malicious manner.

3. Survivability (also referred to as “Resilience”): Survivable—or resilient—software is software
that is resilient enough to (1) either resist (i.e., protect itself against) or tolerate (i.e., continue
operating dependably in spite of) most known attacks plus as many novel attacks as possible, and
(2) recover as quickly as possible, and with as little damage as possible, from those attacks that it
can neither resist nor tolerate.

The objective of secure software development is to design, implement, configure, and sustain software
systems in which security is a necessary property from the beginning of the system’s life cycle (i.e., needs
and requirements definition) to its end (retirement). Experience has taught that the most effective way
to achieve secure software is for its development life cycle processes to rigorously conform to secure

10. #dsy547-BSI_bruce
11. #dsy547-BSI_dacs

#dsy547-BSI_bruce
#dsy547-BSI_dacs

Introduction to Software Security 3
ID: 547-BSI | Version: 7 | Date: 1/13/09 8:55:36 AM

development, deployment, and sustainment principles and practices. Organizations that have adopted a
secure software development life cycle (SDLC) process have found almost immediately upon doing so
that they have begun finding many more vulnerabilities and weaknesses in their software early enough in
the SDLC that they are able to eradicate those problems at an acceptable cost. Moreover, as such secure
practices become second nature over time, these same developers start to notice that they seldom introduce
such vulnerabilities and weaknesses into their software in the first place.

Software Assurance
The main objective of software assurance is to ensure that the processes, procedures, and products used
to produce and sustain the software conform to all requirements and standards specified to govern those
processes, procedures, and products. Software security and secure software are often discussed in the
context of software assurance. Software assurance in its broader sense refers to the assurance of any required
property of software. For software practitioners at the National Aeronautics and Space Administration
(NASA), software assurance refers to the assurance of safety as a property of software. Similarly, in other
communities, software assurance may refer to assurance of reliability or quality. In the context of this article,
software assurance is concerned with assuring the security of software.

An increasingly agreed-upon approach for assuring the security of software is the software security
assurance case, which is intended to provide justifiable confidence that the software under consideration
(1) is free of vulnerabilities; (2) functions in the “intended manner,” and this “intended manner” does not
compromise the security or any other required properties of the software, its environment, or the information
it handles; and (3) can be trusted to continue operating dependably under all anticipated circumstances,
including anomalous and hostile environmental and utilization circumstances—which means that those who
build the software need to anticipate such circumstances and design and implement the software to be able to
handle them gracefully. Such circumstances include

• the presence of unintentional faults in the software and its environment

• the exposure of the operational software to accidental events that threaten its security

• the exposure of the software to intentional choices or actions that threaten its security during its
development, deployment, operation, or sustainment

Software is more likely to be assurably secure when security is a key factor in the following aspects of its
development and deployment:

• development principles and practices: The practices used to develop the software and the principles
that governed its development are expressly intended to encourage and support the consideration
and evaluation of security in every phase of the software’s development life cycle. Some secure
development principles and practices for software are suggested later in this article.

• development tools: The programming language(s), libraries, and development tools used to design and
implement the software are evaluated and selected for their ability to avoid security vulnerabilities and
to support secure development practices and principles.

• testing practices and tools: The software is expressly tested to verify its security, using tools that assist
in such testing.

• acquired components: Commercial off-the-shelf (COTS) and OSS components are evaluated to
determine whether they contain vulnerabilities, and if so whether the vulnerabilities can be remediated
through integration to minimize the risk they pose to the software system.

• deployment configuration: The installation configuration of the software minimizes the exposure of
any residual vulnerabilities it contains.

• execution environment: Protections are provided by the execution environment that can be leveraged
to protect the higher level software that operates in that environment.

• practitioner knowledge: The software’s analysts, designers, developers, testers, and maintainers are
provided with the necessary information (e.g., through training and education) to give them sufficient

Introduction to Software Security 4
ID: 547-BSI | Version: 7 | Date: 1/13/09 8:55:36 AM

security awareness and knowledge to understand, appreciate, and effectively adopt the principles and
practices that will enable them to produce secure software.

General Principles of Secure Software Development
The following principles should guide the development of secure software, including all decisions made in
producing the artifacts at every phase of the software life cycle.

Minimize the number of high-consequence targets. The software should contain as few high-consequence
targets (critical and trusted components) as possible. High-consequence targets are those that represent
the greatest potential loss if the software is compromised and therefore require the most protection from
attack. Critical and trusted components are high-consequence because of the magnitude of impact if they are
compromised. (This principle contributes to trustworthiness and, by its implied contribution to smallness and
simplicity, also to dependability.)

Don’t expose vulnerable and high-consequence components. The critical and trusted components the
software contains should not be exposed to attack. In addition, known vulnerable components should also
be protected from exposure because they can be compromised with little attacker expertise or expenditure of
effort and resources. (This principle contributes to trustworthiness.)

Deny attackers the means to compromise. The software should not provide the attacker with the means
by which to compromise it. Such “means” include exploitable weaknesses and vulnerabilities, dormant
code, backdoors, etc. Also, provide the ability to minimize damage, recover, and reconstitute the software
as quickly as possible following a compromising (or potentially compromising) event to prevent greater
compromise. In practical terms, this will require building in the means to monitor, record, and react
to how the software behaves and what inputs it receives. (This principle contributes to dependability,
trustworthiness, and resilience.)

Always assume “the impossible” will happen. Events that seem to be impossible rarely are. They are often
based on an expectation that something in a particular environment is highly unlikely to exist or to happen.
If the environment changes or the software is installed in a new environment, those events may become quite
likely. The use cases and scenarios defined for the software should take the broadest possible view of what is
possible. The software should be designed to guard against both likely and unlikely events.

Developers should make an effort to recognize assumptions they are not initially conscious of having made
and should determine the extent to which the “impossibilities” associated with those assumptions can be
handled by the software. Specifically, developers should always assume that their software will be attacked,
regardless of what environment it may operate in. This includes acknowledgement that environment-level
security measures such as access controls and firewalls, being composed mainly of software themselves (and
thus equally likely to harbor vulnerabilities and weaknesses), can and will be breached at some point, and so
cannot be relied on as the sole means of protecting software from attack.

Developers who recognize the constant potential for their software to be attacked will be motivated to
program defensively, so that software will operate dependably not only under “normal” conditions but
under anomalous and hostile conditions as well. Related to this principle are two additional principles about
developer assumptions.

1. Never make blind assumptions. Validate every assumption made by the software or about the
software before acting on that assumption.

2. Security software is not the same as secure software. Just because software performs information
security-related functions does not mean the software itself is secure. Software that performs security
functions is just as likely to contain flaws and bugs as other software. However, because security
functions are high-consequence, the compromise or intentional failure of such software has a
significantly higher potential impact than the compromise or failure of other software.

Introduction to Software Security 5
ID: 547-BSI | Version: 7 | Date: 1/13/09 8:55:36 AM

What the Software Practitioner Needs to Know
The main characteristics that discriminate the developer, tester, integrator, and sustainer of secure software
from those of non-secure software are awareness, intention, and caution. A software professional who cares
about security and acts on that awareness will recognize that software vulnerabilities and weaknesses can
originate at any point in the software’s conception or implementation, from inadequate requirements, to poor
design and implementation choices, to inadvertent coding errors or configuration mistakes.

The security-aware software professional knows that the only way these problems can be avoided is through
well-informed and intentional effort: requirements analysts must understand how to translate the need
for software to be secure into actionable requirements, designers must recognize choices that conflict
with secure design principles, and programmers must follow secure coding practices and be cautious
about avoiding coding errors and finding and removing the bugs they were unable to avoid. Software
integrators must recognize and strive to reduce the security risk associated with vulnerable components
(whether custom-built, COTS, or open source), and must understand the ways in which those modules and
components can be integrated to minimize the exposure of any vulnerabilities that cannot be eliminated.

The main reason for adding security practices throughout the SDLC is to establish a software life cycle
process that codifies both caution and intention.

Creating a secure development community using collaboration technologies and a well-integrated
development environment promotes a continuous process of improvement and a focus on secure
development life cycle principles and practices that will result in the ongoing production of more
dependable, trustworthy, survivable software systems.

Integrating Security into the Software Life Cycle
“Security enhancement” of the SDLC process mainly involves the adaptation or augmentation of existing
SDLC activities, practices, and checkpoints, and in a few instances, it may also entail the addition of
new activities, practices, or checkpoints. In a very few instances, it may also require the elimination or
wholesale replacement of certain activities or practices that are known to obstruct the ability to produce
secure software.

The key elements of a secure software life cycle process are

• security criteria in all software life cycle checkpoints (both at the entry of a life cycle phase and at its
exit)

• adherence to secure software principles and practices

• adequate requirements, architecture, and design

• secure coding practices

• secure software integration/assembly practices

• security testing practices that focus on verifying the dependability, trustworthiness, and sustainability of
the software being tested

• secure distribution and deployment practices and mechanisms

• secure sustainment practices

• supportive tools

• secure software configuration management systems and processes

• security-knowledgeable software professionals

• security-aware project management

• upper management commitment to production of secure software

Organizations can insert secure development practices into their software life cycle process either by
adopting a codified secure software development methodology, such as those discussed in Section 3.6 of

Introduction to Software Security 6
ID: 547-BSI | Version: 7 | Date: 1/13/09 8:55:36 AM

Enhancing the Development Life Cycle to Produce Secure Software [DHS/DACS 0812], and the SDLC

Process13 content area of Build Security In, or through the evolutionary security enhancement of their
current practices, as described in Sections 4-10 of Enhancing the Development Life Cycle to Produce Secure

Software and in the Best Practices14 and Knowledge15 sections of Build Security In.

These, as well as the other Best Practices, Knowledge, and Tools16 articles on Build Security In support
organizations in making progress toward achieving these goals. Those responsible for ensuring that software
and systems meet their security requirements throughout the development life cycle should review, select,

and tailor BSI guidance as part of normal project management activities. Additional Resources17 on BSI and
the references below provide additional, experience-based practices and lessons learned that development
organizations need to consider.

References

[DHS/DACS 08] Goertzel, Karen, Theodore Winograd, et al. for
Department of Homeland Security and Department
of Defense Data and Analysis Center for Software.
Enhancing the Development Life Cycle to Produce

Secure Software18: A Reference Guidebook on
Software Assurance, October 2008.

[PITAC 05] President’s Information Technology Advisory
Committee. Cyber Security: A Crisis of

Prioritization19: Report to the President. National
Coordination Office for Information Technology
Research and Development, February 2005.

[Schneier 06] Schneier, Bruce. Beyond Fear. Heidelberg,
Germany: Springer-Verlag, 2006.

12. #dsy547-BSI_dacs
13. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc.html (SDLC Process)
14. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices.html (Best Practices)
15. http://buildsecurityin.us-cert.gov/bsi/articles/knowledge.html (Knowledge)
16. http://buildsecurityin.us-cert.gov/bsi/articles/tools.html (Tools)
17. http://buildsecurityin.us-cert.gov/bsi/resources.html (Additional Resources)

#dsy547-BSI_dacs
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge/sdlc.html
http://buildsecurityin.us-cert.gov/bsi/articles/best-practices.html
http://buildsecurityin.us-cert.gov/bsi/articles/knowledge.html
http://buildsecurityin.us-cert.gov/bsi/articles/tools.html
http://buildsecurityin.us-cert.gov/bsi/resources.html
https://www.thedacs.com/techs/enhanced_life_cycles/
https://www.thedacs.com/techs/enhanced_life_cycles/
http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf
http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf

